mirror of https://github.com/auygun/kaliber.git
Update SincResampler
This commit is contained in:
parent
8cd680d6a4
commit
771f8a3d78
|
@ -11,7 +11,7 @@
|
|||
// <--------------------------------------------------------->
|
||||
// r0_ (during first load)
|
||||
//
|
||||
// kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
|
||||
// kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2
|
||||
// <---------------> <---------------> <---------------> <--------------->
|
||||
// r1_ r2_ r3_ r4_
|
||||
//
|
||||
|
@ -22,8 +22,8 @@
|
|||
// <------------------ ... ----------------->
|
||||
// r0_ (during second load)
|
||||
//
|
||||
// On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
|
||||
// and block_size_ are reinitialized via step (3) in the algorithm below.
|
||||
// On the second request r0_ slides to the right by kernel_size_ / 2 and r3_,
|
||||
// r4_ and block_size_ are reinitialized via step (3) in the algorithm below.
|
||||
//
|
||||
// These new regions remain constant until a Flush() occurs. While complicated,
|
||||
// this allows us to reduce jitter by always requesting the same amount from the
|
||||
|
@ -31,26 +31,27 @@
|
|||
//
|
||||
// The algorithm:
|
||||
//
|
||||
// 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
|
||||
// 1) Allocate input_buffer of size: request_frames_ + kernel_size_; this
|
||||
// ensures
|
||||
// there's enough room to read request_frames_ from the callback into region
|
||||
// r0_ (which will move between the first and subsequent passes).
|
||||
//
|
||||
// 2) Let r1_, r2_ each represent half the kernel centered around r0_:
|
||||
//
|
||||
// r0_ = input_buffer_ + kKernelSize / 2
|
||||
// r0_ = input_buffer_ + kernel_size_ / 2
|
||||
// r1_ = input_buffer_
|
||||
// r2_ = r0_
|
||||
//
|
||||
// r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
|
||||
// r0_ is always request_frames_ in size. r1_, r2_ are kernel_size_ / 2 in
|
||||
// size. r1_ must be zero initialized to avoid convolution with garbage (see
|
||||
// step (5) for why).
|
||||
//
|
||||
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
|
||||
// r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
|
||||
//
|
||||
// r3_ = r0_ + request_frames_ - kKernelSize
|
||||
// r4_ = r0_ + request_frames_ - kKernelSize / 2
|
||||
// block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
|
||||
// r3_ = r0_ + request_frames_ - kernel_size_
|
||||
// r4_ = r0_ + request_frames_ - kernel_size_ / 2
|
||||
// block_size_ = r4_ - r2_ = request_frames_ - kernel_size_ / 2
|
||||
//
|
||||
// 4) Consume request_frames_ frames into r0_.
|
||||
//
|
||||
|
@ -62,9 +63,9 @@
|
|||
//
|
||||
// 7) If we're on the second load, in order to avoid overwriting the frames we
|
||||
// just wrapped from r4_ we need to slide r0_ to the right by the size of
|
||||
// r4_, which is kKernelSize / 2:
|
||||
// r4_, which is kernel_size_ / 2:
|
||||
//
|
||||
// r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
|
||||
// r0_ = r0_ + kernel_size_ / 2 = input_buffer_ + kernel_size_
|
||||
//
|
||||
// r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
|
||||
//
|
||||
|
@ -127,7 +128,9 @@ class ScopedSubnormalFloatDisabler {
|
|||
#endif
|
||||
};
|
||||
|
||||
double SincScaleFactor(double io_ratio) {
|
||||
} // namespace
|
||||
|
||||
static double SincScaleFactor(double io_ratio, int kernel_size) {
|
||||
// |sinc_scale_factor| is basically the normalized cutoff frequency of the
|
||||
// low-pass filter.
|
||||
double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
|
||||
|
@ -136,19 +139,17 @@ double SincScaleFactor(double io_ratio) {
|
|||
// windowing it the transition from pass to stop does not happen right away.
|
||||
// So we should adjust the low pass filter cutoff slightly downward to avoid
|
||||
// some aliasing at the very high-end.
|
||||
// TODO(crogers): this value is empirical and to be more exact should vary
|
||||
// depending on kKernelSize.
|
||||
sinc_scale_factor *= 0.9;
|
||||
// Note: these values are derived empirically.
|
||||
if (kernel_size == SincResampler::kMaxKernelSize) {
|
||||
sinc_scale_factor *= 0.92;
|
||||
} else {
|
||||
DCHECK(kernel_size == SincResampler::kMinKernelSize);
|
||||
sinc_scale_factor *= 0.90;
|
||||
}
|
||||
|
||||
return sinc_scale_factor;
|
||||
}
|
||||
|
||||
int CalculateChunkSize(int block_size_, double io_ratio) {
|
||||
return block_size_ / io_ratio;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// If we know the minimum architecture at compile time, avoid CPU detection.
|
||||
void SincResampler::InitializeCPUSpecificFeatures() {
|
||||
#if defined(_M_ARM64) || defined(__aarch64__)
|
||||
|
@ -170,26 +171,39 @@ void SincResampler::InitializeCPUSpecificFeatures() {
|
|||
#endif
|
||||
}
|
||||
|
||||
static int CalculateChunkSize(int block_size_, double io_ratio) {
|
||||
return block_size_ / io_ratio;
|
||||
}
|
||||
|
||||
// Static
|
||||
int SincResampler::KernelSizeFromRequestFrames(int request_frames) {
|
||||
// We want the kernel size to *more* than 1.5 * `request_frames`.
|
||||
constexpr int kSmallKernelLimit = kMaxKernelSize * 3 / 2;
|
||||
return request_frames <= kSmallKernelLimit ? kMinKernelSize : kMaxKernelSize;
|
||||
}
|
||||
|
||||
SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames)
|
||||
: io_sample_rate_ratio_(io_sample_rate_ratio),
|
||||
: kernel_size_(KernelSizeFromRequestFrames(request_frames)),
|
||||
kernel_storage_size_(kernel_size_ * (kKernelOffsetCount + 1)),
|
||||
io_sample_rate_ratio_(io_sample_rate_ratio),
|
||||
request_frames_(request_frames),
|
||||
input_buffer_size_(request_frames_ + kKernelSize),
|
||||
input_buffer_size_(request_frames_ + kernel_size_),
|
||||
// Create input buffers with a 32-byte alignment for SIMD optimizations.
|
||||
kernel_storage_(static_cast<float*>(
|
||||
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))),
|
||||
base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
|
||||
kernel_pre_sinc_storage_(static_cast<float*>(
|
||||
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))),
|
||||
base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
|
||||
kernel_window_storage_(static_cast<float*>(
|
||||
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))),
|
||||
base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
|
||||
input_buffer_(static_cast<float*>(
|
||||
base::AlignedAlloc<32>(sizeof(float) * input_buffer_size_))),
|
||||
r1_(input_buffer_.get()),
|
||||
r2_(input_buffer_.get() + kKernelSize / 2) {
|
||||
CHECK(request_frames > kKernelSize * 3 / 2)
|
||||
r2_(input_buffer_.get() + kernel_size_ / 2) {
|
||||
CHECK(request_frames > kernel_size_ * 3 / 2)
|
||||
<< "request_frames must be greater than 1.5 kernels to allow sufficient "
|
||||
"data for resampling";
|
||||
// This means that after the first call to Flush we will have
|
||||
// block_size_ > kKernelSize and r2_ < r3_.
|
||||
// block_size_ > kernel_size_ and r2_ < r3_.
|
||||
|
||||
InitializeCPUSpecificFeatures();
|
||||
DCHECK(convolve_proc_);
|
||||
|
@ -197,11 +211,11 @@ SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames)
|
|||
Flush();
|
||||
|
||||
memset(kernel_storage_.get(), 0,
|
||||
sizeof(*kernel_storage_.get()) * kKernelStorageSize);
|
||||
sizeof(*kernel_storage_.get()) * kernel_storage_size_);
|
||||
memset(kernel_pre_sinc_storage_.get(), 0,
|
||||
sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
|
||||
sizeof(*kernel_pre_sinc_storage_.get()) * kernel_storage_size_);
|
||||
memset(kernel_window_storage_.get(), 0,
|
||||
sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
|
||||
sizeof(*kernel_window_storage_.get()) * kernel_storage_size_);
|
||||
|
||||
InitializeKernel();
|
||||
}
|
||||
|
@ -210,10 +224,10 @@ SincResampler::~SincResampler() = default;
|
|||
|
||||
void SincResampler::UpdateRegions(bool second_load) {
|
||||
// Setup various region pointers in the buffer (see diagram above). If we're
|
||||
// on the second load we need to slide r0_ to the right by kKernelSize / 2.
|
||||
r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
|
||||
r3_ = r0_ + request_frames_ - kKernelSize;
|
||||
r4_ = r0_ + request_frames_ - kKernelSize / 2;
|
||||
// on the second load we need to slide r0_ to the right by kernel_size_ / 2.
|
||||
r0_ = input_buffer_.get() + (second_load ? kernel_size_ : kernel_size_ / 2);
|
||||
r3_ = r0_ + request_frames_ - kernel_size_;
|
||||
r4_ = r0_ + request_frames_ - kernel_size_ / 2;
|
||||
block_size_ = r4_ - r2_;
|
||||
chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);
|
||||
|
||||
|
@ -234,19 +248,20 @@ void SincResampler::InitializeKernel() {
|
|||
|
||||
// Generates a set of windowed sinc() kernels.
|
||||
// We generate a range of sub-sample offsets from 0.0 to 1.0.
|
||||
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
|
||||
const double sinc_scale_factor =
|
||||
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
|
||||
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
|
||||
const float subsample_offset =
|
||||
static_cast<float>(offset_idx) / kKernelOffsetCount;
|
||||
|
||||
for (int i = 0; i < kKernelSize; ++i) {
|
||||
const int idx = i + offset_idx * kKernelSize;
|
||||
for (int i = 0; i < kernel_size_; ++i) {
|
||||
const int idx = i + offset_idx * kernel_size_;
|
||||
const float pre_sinc =
|
||||
base::kPiFloat * (i - kKernelSize / 2 - subsample_offset);
|
||||
base::kPiFloat * (i - kernel_size_ / 2 - subsample_offset);
|
||||
kernel_pre_sinc_storage_[idx] = pre_sinc;
|
||||
|
||||
// Compute Blackman window, matching the offset of the sinc().
|
||||
const float x = (i - subsample_offset) / kKernelSize;
|
||||
const float x = (i - subsample_offset) / kernel_size_;
|
||||
const float window =
|
||||
static_cast<float>(kA0 - kA1 * cos(2.0 * base::kPiDouble * x) +
|
||||
kA2 * cos(4.0 * base::kPiDouble * x));
|
||||
|
@ -272,10 +287,11 @@ void SincResampler::SetRatio(double io_sample_rate_ratio) {
|
|||
|
||||
// Optimize reinitialization by reusing values which are independent of
|
||||
// |sinc_scale_factor|. Provides a 3x speedup.
|
||||
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
|
||||
const double sinc_scale_factor =
|
||||
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
|
||||
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
|
||||
for (int i = 0; i < kKernelSize; ++i) {
|
||||
const int idx = i + offset_idx * kKernelSize;
|
||||
for (int i = 0; i < kernel_size_; ++i) {
|
||||
const int idx = i + offset_idx * kernel_size_;
|
||||
const float window = kernel_window_storage_[idx];
|
||||
const float pre_sinc = kernel_pre_sinc_storage_[idx];
|
||||
|
||||
|
@ -312,13 +328,13 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
|
|||
|
||||
// We'll compute "convolutions" for the two kernels which straddle
|
||||
// |virtual_source_idx_|.
|
||||
const float* k1 = kernel_storage_.get() + offset_idx * kKernelSize;
|
||||
const float* k2 = k1 + kKernelSize;
|
||||
const float* k1 = kernel_storage_.get() + offset_idx * kernel_size_;
|
||||
const float* k2 = k1 + kernel_size_;
|
||||
|
||||
// Ensure |k1|, |k2| are 32-byte aligned for SIMD usage. Should always
|
||||
// be true so long as kKernelSize is a multiple of 32.
|
||||
DCHECK(0u == reinterpret_cast<uintptr_t>(k1) & 0x1F);
|
||||
DCHECK(0u == reinterpret_cast<uintptr_t>(k2) & 0x1F);
|
||||
DCHECK(0u == (reinterpret_cast<uintptr_t>(k1) & 0x1F));
|
||||
DCHECK(0u == (reinterpret_cast<uintptr_t>(k2) & 0x1F));
|
||||
|
||||
// Initialize input pointer based on quantized |virtual_source_idx_|.
|
||||
const float* input_ptr = r1_ + source_idx;
|
||||
|
@ -326,13 +342,14 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
|
|||
// Figure out how much to weight each kernel's "convolution".
|
||||
const double kernel_interpolation_factor =
|
||||
virtual_offset_idx - offset_idx;
|
||||
*destination++ =
|
||||
convolve_proc_(input_ptr, k1, k2, kernel_interpolation_factor);
|
||||
*destination++ = convolve_proc_(kernel_size_, input_ptr, k1, k2,
|
||||
kernel_interpolation_factor);
|
||||
|
||||
// Advance the virtual index.
|
||||
virtual_source_idx_ += io_sample_rate_ratio_;
|
||||
if (!--remaining_frames)
|
||||
if (!--remaining_frames) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -342,11 +359,12 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
|
|||
|
||||
// Step (3) -- Copy r3_, r4_ to r1_, r2_.
|
||||
// This wraps the last input frames back to the start of the buffer.
|
||||
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
|
||||
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kernel_size_);
|
||||
|
||||
// Step (4) -- Reinitialize regions if necessary.
|
||||
if (r0_ == r2_)
|
||||
if (r0_ == r2_) {
|
||||
UpdateRegions(true);
|
||||
}
|
||||
|
||||
// Step (5) -- Refresh the buffer with more input.
|
||||
read_cb(request_frames_, r0_);
|
||||
|
@ -381,7 +399,12 @@ double SincResampler::BufferedFrames() const {
|
|||
return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0;
|
||||
}
|
||||
|
||||
float SincResampler::Convolve_C(const float* input_ptr,
|
||||
int SincResampler::KernelSize() const {
|
||||
return kernel_size_;
|
||||
}
|
||||
|
||||
float SincResampler::Convolve_C(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor) {
|
||||
|
@ -390,7 +413,7 @@ float SincResampler::Convolve_C(const float* input_ptr,
|
|||
|
||||
// Generate a single output sample. Unrolling this loop hurt performance in
|
||||
// local testing.
|
||||
int n = kKernelSize;
|
||||
int n = kernel_size;
|
||||
while (n--) {
|
||||
sum1 += *input_ptr * *k1++;
|
||||
sum2 += *input_ptr++ * *k2++;
|
||||
|
@ -402,7 +425,8 @@ float SincResampler::Convolve_C(const float* input_ptr,
|
|||
}
|
||||
|
||||
#if defined(_M_X64) || defined(__x86_64__) || defined(__i386__)
|
||||
float SincResampler::Convolve_SSE(const float* input_ptr,
|
||||
float SincResampler::Convolve_SSE(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor) {
|
||||
|
@ -413,13 +437,13 @@ float SincResampler::Convolve_SSE(const float* input_ptr,
|
|||
// Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
|
||||
// these loops hurt performance in local testing.
|
||||
if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
|
||||
for (int i = 0; i < kKernelSize; i += 4) {
|
||||
for (int i = 0; i < kernel_size; i += 4) {
|
||||
m_input = _mm_loadu_ps(input_ptr + i);
|
||||
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
|
||||
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < kKernelSize; i += 4) {
|
||||
for (int i = 0; i < kernel_size; i += 4) {
|
||||
m_input = _mm_load_ps(input_ptr + i);
|
||||
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
|
||||
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
|
||||
|
@ -444,6 +468,7 @@ float SincResampler::Convolve_SSE(const float* input_ptr,
|
|||
}
|
||||
|
||||
__attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
|
||||
const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
|
@ -456,13 +481,13 @@ __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
|
|||
// these loops has not been tested or benchmarked.
|
||||
bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0;
|
||||
if (!aligned_input) {
|
||||
for (size_t i = 0; i < kKernelSize; i += 8) {
|
||||
for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
|
||||
m_input = _mm256_loadu_ps(input_ptr + i);
|
||||
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
|
||||
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < kKernelSize; i += 8) {
|
||||
for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
|
||||
m_input = _mm256_load_ps(input_ptr + i);
|
||||
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
|
||||
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
|
||||
|
@ -490,7 +515,8 @@ __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
|
|||
return result;
|
||||
}
|
||||
#elif defined(_M_ARM64) || defined(__aarch64__)
|
||||
float SincResampler::Convolve_NEON(const float* input_ptr,
|
||||
float SincResampler::Convolve_NEON(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor) {
|
||||
|
@ -498,7 +524,7 @@ float SincResampler::Convolve_NEON(const float* input_ptr,
|
|||
float32x4_t m_sums1 = vmovq_n_f32(0);
|
||||
float32x4_t m_sums2 = vmovq_n_f32(0);
|
||||
|
||||
const float* upper = input_ptr + kKernelSize;
|
||||
const float* upper = input_ptr + kernel_size;
|
||||
for (; input_ptr < upper;) {
|
||||
m_input = vld1q_f32(input_ptr);
|
||||
input_ptr += 4;
|
||||
|
|
|
@ -16,32 +16,40 @@ namespace base {
|
|||
class SincResampler {
|
||||
public:
|
||||
// The kernel size can be adjusted for quality (higher is better) at the
|
||||
// expense of performance. Must be a multiple of 32.
|
||||
// TODO(dalecurtis): Test performance to see if we can jack this up to 64+.
|
||||
static constexpr int kKernelSize = 32;
|
||||
// expense of performance. Must be a multiple of 32. We aim for 64 for
|
||||
// perceptible audio quality (see crbug.com/1407622), but fallback to 32 in
|
||||
// cases where `request_frames_` is too small (e.g. 10ms of 8kHz audio).
|
||||
// Use SincResampler::KernelSize() to check which size is being used.
|
||||
static constexpr int kMaxKernelSize = 64;
|
||||
static constexpr int kMinKernelSize = 32;
|
||||
|
||||
// Default request size. Affects how often and for how much SincResampler
|
||||
// calls back for input. Must be greater than kKernelSize.
|
||||
// calls back for input. Must be greater than 1.5 * `kernel_size_`.
|
||||
static constexpr int kDefaultRequestSize = 512;
|
||||
|
||||
// A smaller request size, which still allows higher quality resampling, by
|
||||
// guaranteeing we will use kMaxKernelSize.
|
||||
static constexpr int kSmallRequestSize = kMaxKernelSize * 2;
|
||||
|
||||
// The kernel offset count is used for interpolation and is the number of
|
||||
// sub-sample kernel shifts. Can be adjusted for quality (higher is better)
|
||||
// at the expense of allocating more memory.
|
||||
static constexpr int kKernelOffsetCount = 32;
|
||||
static constexpr int kKernelStorageSize =
|
||||
kKernelSize * (kKernelOffsetCount + 1);
|
||||
|
||||
// Callback type for providing more data into the resampler. Expects |frames|
|
||||
// of data to be rendered into |destination|; zero padded if not enough frames
|
||||
// are available to satisfy the request.
|
||||
typedef std::function<void(int frames, float* destination)> ReadCB;
|
||||
|
||||
// Returns the kernel size which will be used for a given `request_frames`.
|
||||
static int KernelSizeFromRequestFrames(int request_frames);
|
||||
|
||||
// Constructs a SincResampler with the specified |read_cb|, which is used to
|
||||
// acquire audio data for resampling. |io_sample_rate_ratio| is the ratio
|
||||
// of input / output sample rates. |request_frames| controls the size in
|
||||
// frames of the buffer requested by each |read_cb| call. The value must be
|
||||
// greater than 1.5*kKernelSize. Specify kDefaultRequestSize if there are no
|
||||
// request size constraints.
|
||||
// greater than 1.5*`kernel_size_`. Specify kDefaultRequestSize if there are
|
||||
// no request size constraints.
|
||||
SincResampler(double io_sample_rate_ratio, int request_frames);
|
||||
|
||||
SincResampler(const SincResampler&) = delete;
|
||||
|
@ -52,10 +60,10 @@ class SincResampler {
|
|||
// Resample |frames| of data from |read_cb_| into |destination|.
|
||||
void Resample(int frames, float* destination, ReadCB read_cb);
|
||||
|
||||
// The maximum size in frames that guarantees Resample() will only make a
|
||||
// single call to |read_cb_| for more data. Note: If PrimeWithSilence() is
|
||||
// The maximum size in output frames that guarantees Resample() will only make
|
||||
// a single call to |read_cb_| for more data. Note: If PrimeWithSilence() is
|
||||
// not called, chunk size will grow after the first two Resample() calls by
|
||||
// kKernelSize / (2 * io_sample_rate_ratio). See the .cc file for details.
|
||||
// `kernel_size_` / (2 * io_sample_rate_ratio). See the .cc file for details.
|
||||
int ChunkSize() const { return chunk_size_; }
|
||||
|
||||
// Returns the max number of frames that could be requested (via multiple
|
||||
|
@ -77,13 +85,19 @@ class SincResampler {
|
|||
// Resample() is in progress.
|
||||
void SetRatio(double io_sample_rate_ratio);
|
||||
|
||||
float* get_kernel_for_testing() { return kernel_storage_.get(); }
|
||||
|
||||
// Return number of input frames consumed by a callback but not yet processed.
|
||||
// Since input/output ratio can be fractional, so can this value.
|
||||
// Zero before first call to Resample().
|
||||
double BufferedFrames() const;
|
||||
|
||||
// Return the actual kernel size used by the resampler. Should be
|
||||
// kMaxKernelSize most of the time, but varies based on `request_frames_`;
|
||||
int KernelSize() const;
|
||||
|
||||
float* get_kernel_for_testing() { return kernel_storage_.get(); }
|
||||
|
||||
int kernel_storage_size_for_testing() { return kernel_storage_size_; }
|
||||
|
||||
private:
|
||||
void InitializeKernel();
|
||||
void UpdateRegions(bool second_load);
|
||||
|
@ -92,21 +106,25 @@ class SincResampler {
|
|||
// linearly interpolated using |kernel_interpolation_factor|. On x86, the
|
||||
// underlying implementation is chosen at run time based on SSE support. On
|
||||
// ARM, NEON support is chosen at compile time based on compilation flags.
|
||||
static float Convolve_C(const float* input_ptr,
|
||||
static float Convolve_C(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor);
|
||||
#if defined(_M_X64) || defined(__x86_64__) || defined(__i386__)
|
||||
static float Convolve_SSE(const float* input_ptr,
|
||||
static float Convolve_SSE(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor);
|
||||
static float Convolve_AVX2(const float* input_ptr,
|
||||
static float Convolve_AVX2(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor);
|
||||
#elif defined(_M_ARM64) || defined(__aarch64__)
|
||||
static float Convolve_NEON(const float* input_ptr,
|
||||
static float Convolve_NEON(const int kernel_size,
|
||||
const float* input_ptr,
|
||||
const float* k1,
|
||||
const float* k2,
|
||||
double kernel_interpolation_factor);
|
||||
|
@ -116,6 +134,9 @@ class SincResampler {
|
|||
// using SincResampler.
|
||||
void InitializeCPUSpecificFeatures();
|
||||
|
||||
const int kernel_size_;
|
||||
const int kernel_storage_size_;
|
||||
|
||||
// The ratio of input / output sample rates.
|
||||
double io_sample_rate_ratio_;
|
||||
|
||||
|
@ -139,9 +160,9 @@ class SincResampler {
|
|||
// The size (in samples) of the internal buffer used by the resampler.
|
||||
const int input_buffer_size_;
|
||||
|
||||
// Contains kKernelOffsetCount kernels back-to-back, each of size kKernelSize.
|
||||
// The kernel offsets are sub-sample shifts of a windowed sinc shifted from
|
||||
// 0.0 to 1.0 sample.
|
||||
// Contains kKernelOffsetCount kernels back-to-back, each of size
|
||||
// `kernel_size_`. The kernel offsets are sub-sample shifts of a windowed sinc
|
||||
// shifted from 0.0 to 1.0 sample.
|
||||
AlignedMemPtr<float[]> kernel_storage_;
|
||||
AlignedMemPtr<float[]> kernel_pre_sinc_storage_;
|
||||
AlignedMemPtr<float[]> kernel_window_storage_;
|
||||
|
@ -150,10 +171,8 @@ class SincResampler {
|
|||
AlignedMemPtr<float[]> input_buffer_;
|
||||
|
||||
// Stores the runtime selection of which Convolve function to use.
|
||||
using ConvolveProc = float (*)(const float*,
|
||||
const float*,
|
||||
const float*,
|
||||
double);
|
||||
using ConvolveProc =
|
||||
float (*)(const int, const float*, const float*, const float*, double);
|
||||
ConvolveProc convolve_proc_;
|
||||
|
||||
// Pointers to the various regions inside |input_buffer_|. See the diagram at
|
||||
|
|
Loading…
Reference in New Issue