Update SincResampler

This commit is contained in:
Attila Uygun 2023-05-03 20:21:26 +02:00
parent 8cd680d6a4
commit 771f8a3d78
2 changed files with 131 additions and 86 deletions

View File

@ -11,7 +11,7 @@
// <---------------------------------------------------------> // <--------------------------------------------------------->
// r0_ (during first load) // r0_ (during first load)
// //
// kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 // kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2
// <---------------> <---------------> <---------------> <---------------> // <---------------> <---------------> <---------------> <--------------->
// r1_ r2_ r3_ r4_ // r1_ r2_ r3_ r4_
// //
@ -22,8 +22,8 @@
// <------------------ ... -----------------> // <------------------ ... ----------------->
// r0_ (during second load) // r0_ (during second load)
// //
// On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_ // On the second request r0_ slides to the right by kernel_size_ / 2 and r3_,
// and block_size_ are reinitialized via step (3) in the algorithm below. // r4_ and block_size_ are reinitialized via step (3) in the algorithm below.
// //
// These new regions remain constant until a Flush() occurs. While complicated, // These new regions remain constant until a Flush() occurs. While complicated,
// this allows us to reduce jitter by always requesting the same amount from the // this allows us to reduce jitter by always requesting the same amount from the
@ -31,26 +31,27 @@
// //
// The algorithm: // The algorithm:
// //
// 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures // 1) Allocate input_buffer of size: request_frames_ + kernel_size_; this
// ensures
// there's enough room to read request_frames_ from the callback into region // there's enough room to read request_frames_ from the callback into region
// r0_ (which will move between the first and subsequent passes). // r0_ (which will move between the first and subsequent passes).
// //
// 2) Let r1_, r2_ each represent half the kernel centered around r0_: // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
// //
// r0_ = input_buffer_ + kKernelSize / 2 // r0_ = input_buffer_ + kernel_size_ / 2
// r1_ = input_buffer_ // r1_ = input_buffer_
// r2_ = r0_ // r2_ = r0_
// //
// r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in // r0_ is always request_frames_ in size. r1_, r2_ are kernel_size_ / 2 in
// size. r1_ must be zero initialized to avoid convolution with garbage (see // size. r1_ must be zero initialized to avoid convolution with garbage (see
// step (5) for why). // step (5) for why).
// //
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
// r0_ and choose block_size_ as the distance in frames between r4_ and r2_: // r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
// //
// r3_ = r0_ + request_frames_ - kKernelSize // r3_ = r0_ + request_frames_ - kernel_size_
// r4_ = r0_ + request_frames_ - kKernelSize / 2 // r4_ = r0_ + request_frames_ - kernel_size_ / 2
// block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2 // block_size_ = r4_ - r2_ = request_frames_ - kernel_size_ / 2
// //
// 4) Consume request_frames_ frames into r0_. // 4) Consume request_frames_ frames into r0_.
// //
@ -62,9 +63,9 @@
// //
// 7) If we're on the second load, in order to avoid overwriting the frames we // 7) If we're on the second load, in order to avoid overwriting the frames we
// just wrapped from r4_ we need to slide r0_ to the right by the size of // just wrapped from r4_ we need to slide r0_ to the right by the size of
// r4_, which is kKernelSize / 2: // r4_, which is kernel_size_ / 2:
// //
// r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize // r0_ = r0_ + kernel_size_ / 2 = input_buffer_ + kernel_size_
// //
// r3_, r4_, and block_size_ then need to be reinitialized, so goto (3). // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
// //
@ -127,7 +128,9 @@ class ScopedSubnormalFloatDisabler {
#endif #endif
}; };
double SincScaleFactor(double io_ratio) { } // namespace
static double SincScaleFactor(double io_ratio, int kernel_size) {
// |sinc_scale_factor| is basically the normalized cutoff frequency of the // |sinc_scale_factor| is basically the normalized cutoff frequency of the
// low-pass filter. // low-pass filter.
double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0; double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
@ -136,19 +139,17 @@ double SincScaleFactor(double io_ratio) {
// windowing it the transition from pass to stop does not happen right away. // windowing it the transition from pass to stop does not happen right away.
// So we should adjust the low pass filter cutoff slightly downward to avoid // So we should adjust the low pass filter cutoff slightly downward to avoid
// some aliasing at the very high-end. // some aliasing at the very high-end.
// TODO(crogers): this value is empirical and to be more exact should vary // Note: these values are derived empirically.
// depending on kKernelSize. if (kernel_size == SincResampler::kMaxKernelSize) {
sinc_scale_factor *= 0.9; sinc_scale_factor *= 0.92;
} else {
DCHECK(kernel_size == SincResampler::kMinKernelSize);
sinc_scale_factor *= 0.90;
}
return sinc_scale_factor; return sinc_scale_factor;
} }
int CalculateChunkSize(int block_size_, double io_ratio) {
return block_size_ / io_ratio;
}
} // namespace
// If we know the minimum architecture at compile time, avoid CPU detection. // If we know the minimum architecture at compile time, avoid CPU detection.
void SincResampler::InitializeCPUSpecificFeatures() { void SincResampler::InitializeCPUSpecificFeatures() {
#if defined(_M_ARM64) || defined(__aarch64__) #if defined(_M_ARM64) || defined(__aarch64__)
@ -170,26 +171,39 @@ void SincResampler::InitializeCPUSpecificFeatures() {
#endif #endif
} }
static int CalculateChunkSize(int block_size_, double io_ratio) {
return block_size_ / io_ratio;
}
// Static
int SincResampler::KernelSizeFromRequestFrames(int request_frames) {
// We want the kernel size to *more* than 1.5 * `request_frames`.
constexpr int kSmallKernelLimit = kMaxKernelSize * 3 / 2;
return request_frames <= kSmallKernelLimit ? kMinKernelSize : kMaxKernelSize;
}
SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames) SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames)
: io_sample_rate_ratio_(io_sample_rate_ratio), : kernel_size_(KernelSizeFromRequestFrames(request_frames)),
kernel_storage_size_(kernel_size_ * (kKernelOffsetCount + 1)),
io_sample_rate_ratio_(io_sample_rate_ratio),
request_frames_(request_frames), request_frames_(request_frames),
input_buffer_size_(request_frames_ + kKernelSize), input_buffer_size_(request_frames_ + kernel_size_),
// Create input buffers with a 32-byte alignment for SIMD optimizations. // Create input buffers with a 32-byte alignment for SIMD optimizations.
kernel_storage_(static_cast<float*>( kernel_storage_(static_cast<float*>(
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
kernel_pre_sinc_storage_(static_cast<float*>( kernel_pre_sinc_storage_(static_cast<float*>(
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
kernel_window_storage_(static_cast<float*>( kernel_window_storage_(static_cast<float*>(
base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), base::AlignedAlloc<32>(sizeof(float) * kernel_storage_size_))),
input_buffer_(static_cast<float*>( input_buffer_(static_cast<float*>(
base::AlignedAlloc<32>(sizeof(float) * input_buffer_size_))), base::AlignedAlloc<32>(sizeof(float) * input_buffer_size_))),
r1_(input_buffer_.get()), r1_(input_buffer_.get()),
r2_(input_buffer_.get() + kKernelSize / 2) { r2_(input_buffer_.get() + kernel_size_ / 2) {
CHECK(request_frames > kKernelSize * 3 / 2) CHECK(request_frames > kernel_size_ * 3 / 2)
<< "request_frames must be greater than 1.5 kernels to allow sufficient " << "request_frames must be greater than 1.5 kernels to allow sufficient "
"data for resampling"; "data for resampling";
// This means that after the first call to Flush we will have // This means that after the first call to Flush we will have
// block_size_ > kKernelSize and r2_ < r3_. // block_size_ > kernel_size_ and r2_ < r3_.
InitializeCPUSpecificFeatures(); InitializeCPUSpecificFeatures();
DCHECK(convolve_proc_); DCHECK(convolve_proc_);
@ -197,11 +211,11 @@ SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames)
Flush(); Flush();
memset(kernel_storage_.get(), 0, memset(kernel_storage_.get(), 0,
sizeof(*kernel_storage_.get()) * kKernelStorageSize); sizeof(*kernel_storage_.get()) * kernel_storage_size_);
memset(kernel_pre_sinc_storage_.get(), 0, memset(kernel_pre_sinc_storage_.get(), 0,
sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize); sizeof(*kernel_pre_sinc_storage_.get()) * kernel_storage_size_);
memset(kernel_window_storage_.get(), 0, memset(kernel_window_storage_.get(), 0,
sizeof(*kernel_window_storage_.get()) * kKernelStorageSize); sizeof(*kernel_window_storage_.get()) * kernel_storage_size_);
InitializeKernel(); InitializeKernel();
} }
@ -210,10 +224,10 @@ SincResampler::~SincResampler() = default;
void SincResampler::UpdateRegions(bool second_load) { void SincResampler::UpdateRegions(bool second_load) {
// Setup various region pointers in the buffer (see diagram above). If we're // Setup various region pointers in the buffer (see diagram above). If we're
// on the second load we need to slide r0_ to the right by kKernelSize / 2. // on the second load we need to slide r0_ to the right by kernel_size_ / 2.
r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2); r0_ = input_buffer_.get() + (second_load ? kernel_size_ : kernel_size_ / 2);
r3_ = r0_ + request_frames_ - kKernelSize; r3_ = r0_ + request_frames_ - kernel_size_;
r4_ = r0_ + request_frames_ - kKernelSize / 2; r4_ = r0_ + request_frames_ - kernel_size_ / 2;
block_size_ = r4_ - r2_; block_size_ = r4_ - r2_;
chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_); chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);
@ -234,19 +248,20 @@ void SincResampler::InitializeKernel() {
// Generates a set of windowed sinc() kernels. // Generates a set of windowed sinc() kernels.
// We generate a range of sub-sample offsets from 0.0 to 1.0. // We generate a range of sub-sample offsets from 0.0 to 1.0.
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); const double sinc_scale_factor =
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
const float subsample_offset = const float subsample_offset =
static_cast<float>(offset_idx) / kKernelOffsetCount; static_cast<float>(offset_idx) / kKernelOffsetCount;
for (int i = 0; i < kKernelSize; ++i) { for (int i = 0; i < kernel_size_; ++i) {
const int idx = i + offset_idx * kKernelSize; const int idx = i + offset_idx * kernel_size_;
const float pre_sinc = const float pre_sinc =
base::kPiFloat * (i - kKernelSize / 2 - subsample_offset); base::kPiFloat * (i - kernel_size_ / 2 - subsample_offset);
kernel_pre_sinc_storage_[idx] = pre_sinc; kernel_pre_sinc_storage_[idx] = pre_sinc;
// Compute Blackman window, matching the offset of the sinc(). // Compute Blackman window, matching the offset of the sinc().
const float x = (i - subsample_offset) / kKernelSize; const float x = (i - subsample_offset) / kernel_size_;
const float window = const float window =
static_cast<float>(kA0 - kA1 * cos(2.0 * base::kPiDouble * x) + static_cast<float>(kA0 - kA1 * cos(2.0 * base::kPiDouble * x) +
kA2 * cos(4.0 * base::kPiDouble * x)); kA2 * cos(4.0 * base::kPiDouble * x));
@ -272,10 +287,11 @@ void SincResampler::SetRatio(double io_sample_rate_ratio) {
// Optimize reinitialization by reusing values which are independent of // Optimize reinitialization by reusing values which are independent of
// |sinc_scale_factor|. Provides a 3x speedup. // |sinc_scale_factor|. Provides a 3x speedup.
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); const double sinc_scale_factor =
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
for (int i = 0; i < kKernelSize; ++i) { for (int i = 0; i < kernel_size_; ++i) {
const int idx = i + offset_idx * kKernelSize; const int idx = i + offset_idx * kernel_size_;
const float window = kernel_window_storage_[idx]; const float window = kernel_window_storage_[idx];
const float pre_sinc = kernel_pre_sinc_storage_[idx]; const float pre_sinc = kernel_pre_sinc_storage_[idx];
@ -312,13 +328,13 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
// We'll compute "convolutions" for the two kernels which straddle // We'll compute "convolutions" for the two kernels which straddle
// |virtual_source_idx_|. // |virtual_source_idx_|.
const float* k1 = kernel_storage_.get() + offset_idx * kKernelSize; const float* k1 = kernel_storage_.get() + offset_idx * kernel_size_;
const float* k2 = k1 + kKernelSize; const float* k2 = k1 + kernel_size_;
// Ensure |k1|, |k2| are 32-byte aligned for SIMD usage. Should always // Ensure |k1|, |k2| are 32-byte aligned for SIMD usage. Should always
// be true so long as kKernelSize is a multiple of 32. // be true so long as kKernelSize is a multiple of 32.
DCHECK(0u == reinterpret_cast<uintptr_t>(k1) & 0x1F); DCHECK(0u == (reinterpret_cast<uintptr_t>(k1) & 0x1F));
DCHECK(0u == reinterpret_cast<uintptr_t>(k2) & 0x1F); DCHECK(0u == (reinterpret_cast<uintptr_t>(k2) & 0x1F));
// Initialize input pointer based on quantized |virtual_source_idx_|. // Initialize input pointer based on quantized |virtual_source_idx_|.
const float* input_ptr = r1_ + source_idx; const float* input_ptr = r1_ + source_idx;
@ -326,15 +342,16 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
// Figure out how much to weight each kernel's "convolution". // Figure out how much to weight each kernel's "convolution".
const double kernel_interpolation_factor = const double kernel_interpolation_factor =
virtual_offset_idx - offset_idx; virtual_offset_idx - offset_idx;
*destination++ = *destination++ = convolve_proc_(kernel_size_, input_ptr, k1, k2,
convolve_proc_(input_ptr, k1, k2, kernel_interpolation_factor); kernel_interpolation_factor);
// Advance the virtual index. // Advance the virtual index.
virtual_source_idx_ += io_sample_rate_ratio_; virtual_source_idx_ += io_sample_rate_ratio_;
if (!--remaining_frames) if (!--remaining_frames) {
return; return;
} }
} }
}
// Wrap back around to the start. // Wrap back around to the start.
DCHECK(virtual_source_idx_ > block_size_); DCHECK(virtual_source_idx_ > block_size_);
@ -342,11 +359,12 @@ void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) {
// Step (3) -- Copy r3_, r4_ to r1_, r2_. // Step (3) -- Copy r3_, r4_ to r1_, r2_.
// This wraps the last input frames back to the start of the buffer. // This wraps the last input frames back to the start of the buffer.
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize); memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kernel_size_);
// Step (4) -- Reinitialize regions if necessary. // Step (4) -- Reinitialize regions if necessary.
if (r0_ == r2_) if (r0_ == r2_) {
UpdateRegions(true); UpdateRegions(true);
}
// Step (5) -- Refresh the buffer with more input. // Step (5) -- Refresh the buffer with more input.
read_cb(request_frames_, r0_); read_cb(request_frames_, r0_);
@ -381,7 +399,12 @@ double SincResampler::BufferedFrames() const {
return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0; return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0;
} }
float SincResampler::Convolve_C(const float* input_ptr, int SincResampler::KernelSize() const {
return kernel_size_;
}
float SincResampler::Convolve_C(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor) { double kernel_interpolation_factor) {
@ -390,7 +413,7 @@ float SincResampler::Convolve_C(const float* input_ptr,
// Generate a single output sample. Unrolling this loop hurt performance in // Generate a single output sample. Unrolling this loop hurt performance in
// local testing. // local testing.
int n = kKernelSize; int n = kernel_size;
while (n--) { while (n--) {
sum1 += *input_ptr * *k1++; sum1 += *input_ptr * *k1++;
sum2 += *input_ptr++ * *k2++; sum2 += *input_ptr++ * *k2++;
@ -402,7 +425,8 @@ float SincResampler::Convolve_C(const float* input_ptr,
} }
#if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__)
float SincResampler::Convolve_SSE(const float* input_ptr, float SincResampler::Convolve_SSE(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor) { double kernel_interpolation_factor) {
@ -413,13 +437,13 @@ float SincResampler::Convolve_SSE(const float* input_ptr,
// Based on |input_ptr| alignment, we need to use loadu or load. Unrolling // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
// these loops hurt performance in local testing. // these loops hurt performance in local testing.
if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) { if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
for (int i = 0; i < kKernelSize; i += 4) { for (int i = 0; i < kernel_size; i += 4) {
m_input = _mm_loadu_ps(input_ptr + i); m_input = _mm_loadu_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
} }
} else { } else {
for (int i = 0; i < kKernelSize; i += 4) { for (int i = 0; i < kernel_size; i += 4) {
m_input = _mm_load_ps(input_ptr + i); m_input = _mm_load_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
@ -444,6 +468,7 @@ float SincResampler::Convolve_SSE(const float* input_ptr,
} }
__attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2( __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
const int kernel_size,
const float* input_ptr, const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
@ -456,13 +481,13 @@ __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
// these loops has not been tested or benchmarked. // these loops has not been tested or benchmarked.
bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0; bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0;
if (!aligned_input) { if (!aligned_input) {
for (size_t i = 0; i < kKernelSize; i += 8) { for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
m_input = _mm256_loadu_ps(input_ptr + i); m_input = _mm256_loadu_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1); m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2); m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
} }
} else { } else {
for (size_t i = 0; i < kKernelSize; i += 8) { for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
m_input = _mm256_load_ps(input_ptr + i); m_input = _mm256_load_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1); m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2); m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
@ -490,7 +515,8 @@ __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
return result; return result;
} }
#elif defined(_M_ARM64) || defined(__aarch64__) #elif defined(_M_ARM64) || defined(__aarch64__)
float SincResampler::Convolve_NEON(const float* input_ptr, float SincResampler::Convolve_NEON(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor) { double kernel_interpolation_factor) {
@ -498,7 +524,7 @@ float SincResampler::Convolve_NEON(const float* input_ptr,
float32x4_t m_sums1 = vmovq_n_f32(0); float32x4_t m_sums1 = vmovq_n_f32(0);
float32x4_t m_sums2 = vmovq_n_f32(0); float32x4_t m_sums2 = vmovq_n_f32(0);
const float* upper = input_ptr + kKernelSize; const float* upper = input_ptr + kernel_size;
for (; input_ptr < upper;) { for (; input_ptr < upper;) {
m_input = vld1q_f32(input_ptr); m_input = vld1q_f32(input_ptr);
input_ptr += 4; input_ptr += 4;

View File

@ -16,32 +16,40 @@ namespace base {
class SincResampler { class SincResampler {
public: public:
// The kernel size can be adjusted for quality (higher is better) at the // The kernel size can be adjusted for quality (higher is better) at the
// expense of performance. Must be a multiple of 32. // expense of performance. Must be a multiple of 32. We aim for 64 for
// TODO(dalecurtis): Test performance to see if we can jack this up to 64+. // perceptible audio quality (see crbug.com/1407622), but fallback to 32 in
static constexpr int kKernelSize = 32; // cases where `request_frames_` is too small (e.g. 10ms of 8kHz audio).
// Use SincResampler::KernelSize() to check which size is being used.
static constexpr int kMaxKernelSize = 64;
static constexpr int kMinKernelSize = 32;
// Default request size. Affects how often and for how much SincResampler // Default request size. Affects how often and for how much SincResampler
// calls back for input. Must be greater than kKernelSize. // calls back for input. Must be greater than 1.5 * `kernel_size_`.
static constexpr int kDefaultRequestSize = 512; static constexpr int kDefaultRequestSize = 512;
// A smaller request size, which still allows higher quality resampling, by
// guaranteeing we will use kMaxKernelSize.
static constexpr int kSmallRequestSize = kMaxKernelSize * 2;
// The kernel offset count is used for interpolation and is the number of // The kernel offset count is used for interpolation and is the number of
// sub-sample kernel shifts. Can be adjusted for quality (higher is better) // sub-sample kernel shifts. Can be adjusted for quality (higher is better)
// at the expense of allocating more memory. // at the expense of allocating more memory.
static constexpr int kKernelOffsetCount = 32; static constexpr int kKernelOffsetCount = 32;
static constexpr int kKernelStorageSize =
kKernelSize * (kKernelOffsetCount + 1);
// Callback type for providing more data into the resampler. Expects |frames| // Callback type for providing more data into the resampler. Expects |frames|
// of data to be rendered into |destination|; zero padded if not enough frames // of data to be rendered into |destination|; zero padded if not enough frames
// are available to satisfy the request. // are available to satisfy the request.
typedef std::function<void(int frames, float* destination)> ReadCB; typedef std::function<void(int frames, float* destination)> ReadCB;
// Returns the kernel size which will be used for a given `request_frames`.
static int KernelSizeFromRequestFrames(int request_frames);
// Constructs a SincResampler with the specified |read_cb|, which is used to // Constructs a SincResampler with the specified |read_cb|, which is used to
// acquire audio data for resampling. |io_sample_rate_ratio| is the ratio // acquire audio data for resampling. |io_sample_rate_ratio| is the ratio
// of input / output sample rates. |request_frames| controls the size in // of input / output sample rates. |request_frames| controls the size in
// frames of the buffer requested by each |read_cb| call. The value must be // frames of the buffer requested by each |read_cb| call. The value must be
// greater than 1.5*kKernelSize. Specify kDefaultRequestSize if there are no // greater than 1.5*`kernel_size_`. Specify kDefaultRequestSize if there are
// request size constraints. // no request size constraints.
SincResampler(double io_sample_rate_ratio, int request_frames); SincResampler(double io_sample_rate_ratio, int request_frames);
SincResampler(const SincResampler&) = delete; SincResampler(const SincResampler&) = delete;
@ -52,10 +60,10 @@ class SincResampler {
// Resample |frames| of data from |read_cb_| into |destination|. // Resample |frames| of data from |read_cb_| into |destination|.
void Resample(int frames, float* destination, ReadCB read_cb); void Resample(int frames, float* destination, ReadCB read_cb);
// The maximum size in frames that guarantees Resample() will only make a // The maximum size in output frames that guarantees Resample() will only make
// single call to |read_cb_| for more data. Note: If PrimeWithSilence() is // a single call to |read_cb_| for more data. Note: If PrimeWithSilence() is
// not called, chunk size will grow after the first two Resample() calls by // not called, chunk size will grow after the first two Resample() calls by
// kKernelSize / (2 * io_sample_rate_ratio). See the .cc file for details. // `kernel_size_` / (2 * io_sample_rate_ratio). See the .cc file for details.
int ChunkSize() const { return chunk_size_; } int ChunkSize() const { return chunk_size_; }
// Returns the max number of frames that could be requested (via multiple // Returns the max number of frames that could be requested (via multiple
@ -77,13 +85,19 @@ class SincResampler {
// Resample() is in progress. // Resample() is in progress.
void SetRatio(double io_sample_rate_ratio); void SetRatio(double io_sample_rate_ratio);
float* get_kernel_for_testing() { return kernel_storage_.get(); }
// Return number of input frames consumed by a callback but not yet processed. // Return number of input frames consumed by a callback but not yet processed.
// Since input/output ratio can be fractional, so can this value. // Since input/output ratio can be fractional, so can this value.
// Zero before first call to Resample(). // Zero before first call to Resample().
double BufferedFrames() const; double BufferedFrames() const;
// Return the actual kernel size used by the resampler. Should be
// kMaxKernelSize most of the time, but varies based on `request_frames_`;
int KernelSize() const;
float* get_kernel_for_testing() { return kernel_storage_.get(); }
int kernel_storage_size_for_testing() { return kernel_storage_size_; }
private: private:
void InitializeKernel(); void InitializeKernel();
void UpdateRegions(bool second_load); void UpdateRegions(bool second_load);
@ -92,21 +106,25 @@ class SincResampler {
// linearly interpolated using |kernel_interpolation_factor|. On x86, the // linearly interpolated using |kernel_interpolation_factor|. On x86, the
// underlying implementation is chosen at run time based on SSE support. On // underlying implementation is chosen at run time based on SSE support. On
// ARM, NEON support is chosen at compile time based on compilation flags. // ARM, NEON support is chosen at compile time based on compilation flags.
static float Convolve_C(const float* input_ptr, static float Convolve_C(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor); double kernel_interpolation_factor);
#if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__)
static float Convolve_SSE(const float* input_ptr, static float Convolve_SSE(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor); double kernel_interpolation_factor);
static float Convolve_AVX2(const float* input_ptr, static float Convolve_AVX2(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor); double kernel_interpolation_factor);
#elif defined(_M_ARM64) || defined(__aarch64__) #elif defined(_M_ARM64) || defined(__aarch64__)
static float Convolve_NEON(const float* input_ptr, static float Convolve_NEON(const int kernel_size,
const float* input_ptr,
const float* k1, const float* k1,
const float* k2, const float* k2,
double kernel_interpolation_factor); double kernel_interpolation_factor);
@ -116,6 +134,9 @@ class SincResampler {
// using SincResampler. // using SincResampler.
void InitializeCPUSpecificFeatures(); void InitializeCPUSpecificFeatures();
const int kernel_size_;
const int kernel_storage_size_;
// The ratio of input / output sample rates. // The ratio of input / output sample rates.
double io_sample_rate_ratio_; double io_sample_rate_ratio_;
@ -139,9 +160,9 @@ class SincResampler {
// The size (in samples) of the internal buffer used by the resampler. // The size (in samples) of the internal buffer used by the resampler.
const int input_buffer_size_; const int input_buffer_size_;
// Contains kKernelOffsetCount kernels back-to-back, each of size kKernelSize. // Contains kKernelOffsetCount kernels back-to-back, each of size
// The kernel offsets are sub-sample shifts of a windowed sinc shifted from // `kernel_size_`. The kernel offsets are sub-sample shifts of a windowed sinc
// 0.0 to 1.0 sample. // shifted from 0.0 to 1.0 sample.
AlignedMemPtr<float[]> kernel_storage_; AlignedMemPtr<float[]> kernel_storage_;
AlignedMemPtr<float[]> kernel_pre_sinc_storage_; AlignedMemPtr<float[]> kernel_pre_sinc_storage_;
AlignedMemPtr<float[]> kernel_window_storage_; AlignedMemPtr<float[]> kernel_window_storage_;
@ -150,10 +171,8 @@ class SincResampler {
AlignedMemPtr<float[]> input_buffer_; AlignedMemPtr<float[]> input_buffer_;
// Stores the runtime selection of which Convolve function to use. // Stores the runtime selection of which Convolve function to use.
using ConvolveProc = float (*)(const float*, using ConvolveProc =
const float*, float (*)(const int, const float*, const float*, const float*, double);
const float*,
double);
ConvolveProc convolve_proc_; ConvolveProc convolve_proc_;
// Pointers to the various regions inside |input_buffer_|. See the diagram at // Pointers to the various regions inside |input_buffer_|. See the diagram at