// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_ // and r4_ will move after the first load): // // |----------------|-----------------------------------------|----------------| // // request_frames_ // <---------------------------------------------------------> // r0_ (during first load) // // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 // <---------------> <---------------> <---------------> <---------------> // r1_ r2_ r3_ r4_ // // block_size_ == r4_ - r2_ // <---------------------------------------> // // request_frames_ // <------------------ ... -----------------> // r0_ (during second load) // // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_ // and block_size_ are reinitialized via step (3) in the algorithm below. // // These new regions remain constant until a Flush() occurs. While complicated, // this allows us to reduce jitter by always requesting the same amount from the // provided callback. // // The algorithm: // // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures // there's enough room to read request_frames_ from the callback into region // r0_ (which will move between the first and subsequent passes). // // 2) Let r1_, r2_ each represent half the kernel centered around r0_: // // r0_ = input_buffer_ + kKernelSize / 2 // r1_ = input_buffer_ // r2_ = r0_ // // r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in // size. r1_ must be zero initialized to avoid convolution with garbage (see // step (5) for why). // // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of // r0_ and choose block_size_ as the distance in frames between r4_ and r2_: // // r3_ = r0_ + request_frames_ - kKernelSize // r4_ = r0_ + request_frames_ - kKernelSize / 2 // block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2 // // 4) Consume request_frames_ frames into r0_. // // 5) Position kernel centered at start of r2_ and generate output frames until // the kernel is centered at the start of r4_ or we've finished generating // all the output frames. // // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_. // // 7) If we're on the second load, in order to avoid overwriting the frames we // just wrapped from r4_ we need to slide r0_ to the right by the size of // r4_, which is kKernelSize / 2: // // r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize // // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3). // // 8) Else, if we're not on the second load, goto (4). // // Note: we're glossing over how the sub-sample handling works with // |virtual_source_idx_|, etc. #include "base/sinc_resampler.h" #include #include #include #include "base/log.h" #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) #include // Including these headers directly should generally be avoided. Since // Chrome is compiled with -msse3 (the minimal requirement), we include the // headers directly to make the intrinsics available. #include #include #include #elif defined(_M_ARM64) || defined(__aarch64__) #include #endif namespace base { namespace { constexpr double kPiDouble = 3.14159265358979323846; constexpr float kPiFloat = 3.14159265358979323846f; class ScopedSubnormalFloatDisabler { public: ScopedSubnormalFloatDisabler() { #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) // Turn on "subnormals are zero" and "flush to zero" CSR flags. orig_state_ = _mm_getcsr(); _mm_setcsr(orig_state_ | 0x8040); #endif } ScopedSubnormalFloatDisabler(const ScopedSubnormalFloatDisabler&) = delete; ~ScopedSubnormalFloatDisabler() { #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) _mm_setcsr(orig_state_); #endif } ScopedSubnormalFloatDisabler& operator=(const ScopedSubnormalFloatDisabler&) = delete; #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) private: unsigned int orig_state_; #endif }; double SincScaleFactor(double io_ratio) { // |sinc_scale_factor| is basically the normalized cutoff frequency of the // low-pass filter. double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0; // The sinc function is an idealized brick-wall filter, but since we're // windowing it the transition from pass to stop does not happen right away. // So we should adjust the low pass filter cutoff slightly downward to avoid // some aliasing at the very high-end. // TODO(crogers): this value is empirical and to be more exact should vary // depending on kKernelSize. sinc_scale_factor *= 0.9; return sinc_scale_factor; } int CalculateChunkSize(int block_size_, double io_ratio) { return block_size_ / io_ratio; } } // namespace // If we know the minimum architecture at compile time, avoid CPU detection. void SincResampler::InitializeCPUSpecificFeatures() { #if defined(_M_ARM64) || defined(__aarch64__) convolve_proc_ = Convolve_NEON; #elif defined(_M_X64) || defined(__x86_64__) || defined(__i386__) #if 0 // TODO // Using AVX2 instead of SSE2 when AVX2/FMA3 supported. if (cpu.has_avx2() && cpu.has_fma3()) convolve_proc_ = Convolve_AVX2; else if (cpu.has_sse2()) convolve_proc_ = Convolve_SSE; else convolve_proc_ = Convolve_C; #endif convolve_proc_ = Convolve_SSE; #else // Unknown architecture. convolve_proc_ = Convolve_C; #endif } SincResampler::SincResampler(double io_sample_rate_ratio, int request_frames) : io_sample_rate_ratio_(io_sample_rate_ratio), request_frames_(request_frames), input_buffer_size_(request_frames_ + kKernelSize), // Create input buffers with a 32-byte alignment for SIMD optimizations. kernel_storage_(static_cast( base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), kernel_pre_sinc_storage_(static_cast( base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), kernel_window_storage_(static_cast( base::AlignedAlloc<32>(sizeof(float) * kKernelStorageSize))), input_buffer_(static_cast( base::AlignedAlloc<32>(sizeof(float) * input_buffer_size_))), r1_(input_buffer_.get()), r2_(input_buffer_.get() + kKernelSize / 2) { CHECK(request_frames > kKernelSize * 3 / 2) << "request_frames must be greater than 1.5 kernels to allow sufficient " "data for resampling"; // This means that after the first call to Flush we will have // block_size_ > kKernelSize and r2_ < r3_. InitializeCPUSpecificFeatures(); DCHECK(convolve_proc_); CHECK(request_frames_ > 0); Flush(); memset(kernel_storage_.get(), 0, sizeof(*kernel_storage_.get()) * kKernelStorageSize); memset(kernel_pre_sinc_storage_.get(), 0, sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize); memset(kernel_window_storage_.get(), 0, sizeof(*kernel_window_storage_.get()) * kKernelStorageSize); InitializeKernel(); } SincResampler::~SincResampler() = default; void SincResampler::UpdateRegions(bool second_load) { // Setup various region pointers in the buffer (see diagram above). If we're // on the second load we need to slide r0_ to the right by kKernelSize / 2. r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2); r3_ = r0_ + request_frames_ - kKernelSize; r4_ = r0_ + request_frames_ - kKernelSize / 2; block_size_ = r4_ - r2_; chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_); // r1_ at the beginning of the buffer. DCHECK(r1_ == input_buffer_.get()); // r1_ left of r2_, r4_ left of r3_ and size correct. DCHECK(r2_ - r1_ == r4_ - r3_); // r2_ left of r3. DCHECK(r2_ < r3_); } void SincResampler::InitializeKernel() { // Blackman window parameters. static const double kAlpha = 0.16; static const double kA0 = 0.5 * (1.0 - kAlpha); static const double kA1 = 0.5; static const double kA2 = 0.5 * kAlpha; // Generates a set of windowed sinc() kernels. // We generate a range of sub-sample offsets from 0.0 to 1.0. const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { const float subsample_offset = static_cast(offset_idx) / kKernelOffsetCount; for (int i = 0; i < kKernelSize; ++i) { const int idx = i + offset_idx * kKernelSize; const float pre_sinc = base::kPiFloat * (i - kKernelSize / 2 - subsample_offset); kernel_pre_sinc_storage_[idx] = pre_sinc; // Compute Blackman window, matching the offset of the sinc(). const float x = (i - subsample_offset) / kKernelSize; const float window = static_cast(kA0 - kA1 * cos(2.0 * base::kPiDouble * x) + kA2 * cos(4.0 * base::kPiDouble * x)); kernel_window_storage_[idx] = window; // Compute the sinc with offset, then window the sinc() function and store // at the correct offset. kernel_storage_[idx] = static_cast( window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc : sinc_scale_factor)); } } } void SincResampler::SetRatio(double io_sample_rate_ratio) { if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) < std::numeric_limits::epsilon()) { return; } io_sample_rate_ratio_ = io_sample_rate_ratio; chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_); // Optimize reinitialization by reusing values which are independent of // |sinc_scale_factor|. Provides a 3x speedup. const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { for (int i = 0; i < kKernelSize; ++i) { const int idx = i + offset_idx * kKernelSize; const float window = kernel_window_storage_[idx]; const float pre_sinc = kernel_pre_sinc_storage_[idx]; kernel_storage_[idx] = static_cast( window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc : sinc_scale_factor)); } } } void SincResampler::Resample(int frames, float* destination, ReadCB read_cb) { int remaining_frames = frames; // Step (1) -- Prime the input buffer at the start of the input stream. if (!buffer_primed_ && remaining_frames) { read_cb(request_frames_, r0_); buffer_primed_ = true; } // Step (2) -- Resample! while (remaining_frames) { // Silent audio can contain non-zero samples small enough to result in // subnormals internally. Disabling subnormals can be significantly faster. { ScopedSubnormalFloatDisabler disable_subnormals; while (virtual_source_idx_ < block_size_) { // |virtual_source_idx_| lies in between two kernel offsets so figure // out what they are. const int source_idx = static_cast(virtual_source_idx_); const double virtual_offset_idx = (virtual_source_idx_ - source_idx) * kKernelOffsetCount; const int offset_idx = static_cast(virtual_offset_idx); // We'll compute "convolutions" for the two kernels which straddle // |virtual_source_idx_|. const float* k1 = kernel_storage_.get() + offset_idx * kKernelSize; const float* k2 = k1 + kKernelSize; // Ensure |k1|, |k2| are 32-byte aligned for SIMD usage. Should always // be true so long as kKernelSize is a multiple of 32. DCHECK(0u == reinterpret_cast(k1) & 0x1F); DCHECK(0u == reinterpret_cast(k2) & 0x1F); // Initialize input pointer based on quantized |virtual_source_idx_|. const float* input_ptr = r1_ + source_idx; // Figure out how much to weight each kernel's "convolution". const double kernel_interpolation_factor = virtual_offset_idx - offset_idx; *destination++ = convolve_proc_(input_ptr, k1, k2, kernel_interpolation_factor); // Advance the virtual index. virtual_source_idx_ += io_sample_rate_ratio_; if (!--remaining_frames) return; } } // Wrap back around to the start. DCHECK(virtual_source_idx_ > block_size_); virtual_source_idx_ -= block_size_; // Step (3) -- Copy r3_, r4_ to r1_, r2_. // This wraps the last input frames back to the start of the buffer. memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize); // Step (4) -- Reinitialize regions if necessary. if (r0_ == r2_) UpdateRegions(true); // Step (5) -- Refresh the buffer with more input. read_cb(request_frames_, r0_); } } void SincResampler::PrimeWithSilence() { // By enforcing the buffer hasn't been primed, we ensure the input buffer has // already been zeroed during construction or by a previous Flush() call. DCHECK(!buffer_primed_); DCHECK(input_buffer_[0] == 0.0f); UpdateRegions(true); } void SincResampler::Flush() { virtual_source_idx_ = 0; buffer_primed_ = false; memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * input_buffer_size_); UpdateRegions(false); } int SincResampler::GetMaxInputFramesRequested( int output_frames_requested) const { const int num_chunks = static_cast( std::ceil(static_cast(output_frames_requested) / chunk_size_)); return num_chunks * request_frames_; } double SincResampler::BufferedFrames() const { return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0; } float SincResampler::Convolve_C(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { float sum1 = 0; float sum2 = 0; // Generate a single output sample. Unrolling this loop hurt performance in // local testing. int n = kKernelSize; while (n--) { sum1 += *input_ptr * *k1++; sum2 += *input_ptr++ * *k2++; } // Linearly interpolate the two "convolutions". return static_cast((1.0 - kernel_interpolation_factor) * sum1 + kernel_interpolation_factor * sum2); } #if defined(_M_X64) || defined(__x86_64__) || defined(__i386__) float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { __m128 m_input; __m128 m_sums1 = _mm_setzero_ps(); __m128 m_sums2 = _mm_setzero_ps(); // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling // these loops hurt performance in local testing. if (reinterpret_cast(input_ptr) & 0x0F) { for (int i = 0; i < kKernelSize; i += 4) { m_input = _mm_loadu_ps(input_ptr + i); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); } } else { for (int i = 0; i < kKernelSize; i += 4) { m_input = _mm_load_ps(input_ptr + i); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); } } // Linearly interpolate the two "convolutions". m_sums1 = _mm_mul_ps( m_sums1, _mm_set_ps1(static_cast(1.0 - kernel_interpolation_factor))); m_sums2 = _mm_mul_ps( m_sums2, _mm_set_ps1(static_cast(kernel_interpolation_factor))); m_sums1 = _mm_add_ps(m_sums1, m_sums2); // Sum components together. float result; m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1); _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(m_sums2, m_sums2, 1))); return result; } __attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2( const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { __m256 m_input; __m256 m_sums1 = _mm256_setzero_ps(); __m256 m_sums2 = _mm256_setzero_ps(); // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling // these loops has not been tested or benchmarked. bool aligned_input = (reinterpret_cast(input_ptr) & 0x1F) == 0; if (!aligned_input) { for (size_t i = 0; i < kKernelSize; i += 8) { m_input = _mm256_loadu_ps(input_ptr + i); m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1); m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2); } } else { for (size_t i = 0; i < kKernelSize; i += 8) { m_input = _mm256_load_ps(input_ptr + i); m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1); m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2); } } // Linearly interpolate the two "convolutions". __m128 m128_sums1 = _mm_add_ps(_mm256_extractf128_ps(m_sums1, 0), _mm256_extractf128_ps(m_sums1, 1)); __m128 m128_sums2 = _mm_add_ps(_mm256_extractf128_ps(m_sums2, 0), _mm256_extractf128_ps(m_sums2, 1)); m128_sums1 = _mm_mul_ps( m128_sums1, _mm_set_ps1(static_cast(1.0 - kernel_interpolation_factor))); m128_sums2 = _mm_mul_ps( m128_sums2, _mm_set_ps1(static_cast(kernel_interpolation_factor))); m128_sums1 = _mm_add_ps(m128_sums1, m128_sums2); // Sum components together. float result; m128_sums2 = _mm_add_ps(_mm_movehl_ps(m128_sums1, m128_sums1), m128_sums1); _mm_store_ss(&result, _mm_add_ss(m128_sums2, _mm_shuffle_ps(m128_sums2, m128_sums2, 1))); return result; } #elif defined(_M_ARM64) || defined(__aarch64__) float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { float32x4_t m_input; float32x4_t m_sums1 = vmovq_n_f32(0); float32x4_t m_sums2 = vmovq_n_f32(0); const float* upper = input_ptr + kKernelSize; for (; input_ptr < upper;) { m_input = vld1q_f32(input_ptr); input_ptr += 4; m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1)); k1 += 4; m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2)); k2 += 4; } // Linearly interpolate the two "convolutions". m_sums1 = vmlaq_f32( vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)), m_sums2, vmovq_n_f32(kernel_interpolation_factor)); // Sum components together. float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1)); return vget_lane_f32(vpadd_f32(m_half, m_half), 0); } #endif } // namespace base